# SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Organic Data Review Checklist - Standard Validation

| Project:                                                | Harley-Davidson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | _ Page 1 of 11                                                         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| SDG No:                                                 | 180-40481-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ Analysis:                                                                                                      | VOC                                                                    |
|                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method:                                                                                                          | 8260 LL                                                                |
| Laboratory:                                             | TestAmerica Pittsburgh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ Matrix:                                                                                                        | Water                                                                  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                        |
| data have been su                                       | ackage has been reviewed and the summarized. The general criteria nination of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he analytical quality colused to assess the ana                                                                  | ntrol/quality assurance performance alytical integrityof the data were |
|                                                         | Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analytical Surrogate I<br>Internal Standard Per<br>MS/MSD Recoveries<br>LCS Recoveries<br>Re-analysis and Second | formance<br>and Differences                                            |
| Project Specific Q                                      | A/QC or contract requirements m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nay take priority over va                                                                                        | alidation criteria in this procedure.                                  |
| Overall Remarks  LCS  F  JUS                            | 2/11/4/-01 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 0                                                                      |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                        |
| Definition of Qualifiting Reviewed by:  QA Reviewed by: | "U", not detected at the associat "UJ", not detected and associate "J", associated value estimated "R", associated value unusable "=", compound properly identified the compound properly identified t | ed value estimated or analyte identity unfo                                                                      | Date: 6-23-15.                                                         |

|                                                              |                 | rage 2 of 11                                                       |
|--------------------------------------------------------------|-----------------|--------------------------------------------------------------------|
| Case Narrativ                                                | /e              |                                                                    |
| erify direct state                                           | ments made with | nin the Laboratory Case Narrative (note discrepancies).            |
| Remarks:                                                     | No              | issuas                                                             |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
| <u> </u>                                                     |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
| I. Re-analysis                                               | and Secondar    | ry Dilutions                                                       |
|                                                              |                 |                                                                    |
| Verify that re-a <b>na</b><br>appropriate resul <sup>i</sup> |                 | dary dilutions were performed and reported as necessary. Determine |
| Remarks:                                                     | 102             | 135 nus                                                            |
| tomanto.                                                     |                 | V Oy Cas                                                           |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
| •                                                            |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |
|                                                              |                 |                                                                    |

# **III. Holding Times**

VOC - Waters - unpreserved: aromatic within 7 days, non-aromatic within 14 days of sample collection

VOC - Waters - preserved: aromatic and non-aromatic within 14 days of sample collection

VOC - Soils - preserve or analyze within 48 hours of sample collection; analyze within 14 days of preservation

SVOC, Pest., PCB - Waters - extract within 7 days of sample collection, analyze within 40 days of extraction SVOC, Pest., PCB - Soils - extract within 14 days of sample collection, analyze within 40 days of extraction

# **Deviations:**

|          | VOC       |          |           | SVOC      |          |           | Pest/PCB  |          |
|----------|-----------|----------|-----------|-----------|----------|-----------|-----------|----------|
| Sample # | Date      | Date     | Date      | Date      | Date     | Date      | Date      | Date     |
|          | Collected | Analyzed | Collected | Extracted | Analyzed | Collected | Extracted | Analyzed |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          | +         |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          | 1         |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          | +         |          |           |           |          |           |           |          |
|          |           |          |           | 2.        |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           | -        |           |           |          |           |           |          |
|          | +         |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |
|          |           |          |           |           |          |           |           |          |

| - 4           | 4.5    |   |   |   |  |
|---------------|--------|---|---|---|--|
| -             | cti    |   | m | • |  |
| $\overline{}$ | Vo III | w |   | 3 |  |

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

| Remarks: | <br>No | 1845      | Sec affertual |  |
|----------|--------|-----------|---------------|--|
|          | <br>   | : · · · · |               |  |
|          |        |           |               |  |
|          | <br>   |           |               |  |

# IV. System Monitoring Compounds (SMC) Recoveries (VOC, SVOC, Pesticides, PCBs)

List SMC compounds with unacceptable recoveries:

|     |          | 4 8  |                |    |
|-----|----------|------|----------------|----|
| Dev | JE 11 45 | 1417 | nn             |    |
| DE  | 716      | ш    | <i>-7</i> II I | Э. |

|          |                                                  | VOC |          |     | SVOC   |      |      | SVOC  |          | Pest     | PCB |
|----------|--------------------------------------------------|-----|----------|-----|--------|------|------|-------|----------|----------|-----|
| Sample # |                                                  |     |          | B/N | Compou | ınds | Acid | Compo | unds     |          |     |
| ·        | TOL                                              | BFB | DCE      | NBZ | FBP    | TPH  | PHL  | 2FP   | TBP      | TCX      | DCB |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          | -                                                |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          | <del>                                     </del> |     | <u> </u> |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          | <del> </del>                                     |     | <u> </u> |     |        |      |      |       | <u> </u> |          |     |
|          | <del> </del>                                     |     |          |     |        |      |      | -     |          |          |     |
|          |                                                  | ļ — |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          | <u> </u> |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
|          |                                                  |     |          |     |        |      |      |       |          |          |     |
| QC       |                                                  |     |          |     |        |      |      |       |          |          |     |
| Limits   |                                                  |     |          |     |        |      |      |       |          |          |     |

- 1. If any SMC recovery is <10%, qualify all positive results in associated fractions as estimated (J)
- 2. If any SMC recovery is <10%, qualify all nondetects in associated fractions as unusable (R)
- 3. If SMC recoveries fall between 10% and the lower recovery limit, qualify results as estimated (J/UJ)
- 4. If SMC recoveries fall above the upper recovery limit, qualify positive results as estimated (J)
- 5. Use professional judgement to qualify Pest/PCB results when SMC recoveries are >10%
- 6. Use professional judgement to qualify results when SMC recoveries have been diluted out of spec.
- 7. For SVOC, qualification of the data is required only when 2 or more SMC per fraction are not within control limits
- 8. Note: SMC formerly known as surrogates.

| Remarks:                              | /\/\o_ | i Ssub5 | <br> |          |
|---------------------------------------|--------|---------|------|----------|
| · · · · · · · · · · · · · · · · · · · |        |         | <br> |          |
|                                       |        |         | <br> | <u> </u> |
|                                       |        |         | <br> |          |

# V. Internal Standards Performance (VOC, SVOC)

VOC internal standard area counts within -50% to +100% of standard (Y/N) VOC internal standard retention times within ± 30 seconds of standard (Y/N)

SVOC internal standard area counts within -50% to +100% of standard (Y/N) SVOC internal standard retention times within + 30 seconds of standard (Y/N)

# **Deviations:**

|                                       | IS                                           | Area   | Acceptable | RT                                               | Std. RT                                          |
|---------------------------------------|----------------------------------------------|--------|------------|--------------------------------------------------|--------------------------------------------------|
| Sample #                              | Affected                                     | Counts | Panas      | 1 '``                                            |                                                  |
| Campic #                              | Alleoted                                     | Counts | Range      |                                                  | Value                                            |
|                                       |                                              |        |            |                                                  | 1                                                |
| <del></del>                           |                                              |        |            |                                                  | 1                                                |
|                                       |                                              |        |            | ļ                                                |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
| · · · · · · · · · · · · · · · · · · · |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            | <u> </u>                                         |                                                  |
|                                       | İ                                            | l i    |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  | -                                                |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  | <del>                                     </del> |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            | <del></del>                                      | <del>                                     </del> |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        |            |                                                  | <del> </del>                                     |
|                                       |                                              |        |            |                                                  |                                                  |
|                                       |                                              |        | -          |                                                  |                                                  |
| •                                     |                                              |        |            | <del>                                     </del> | -                                                |
|                                       | <u>                                     </u> |        |            |                                                  |                                                  |

- 1. If area counts are outside limits, qualify positive results associated with that IS as estimated (J)
- 2. Non-detected compounds quantitated using an IS area count >100% should not be qualified
- 3. Non-detected compounds quantitated using an IS area count <50%, qualify as estimated (UJ)
- 4. If extremely low area counts are reported (<50% of the lower limit), qualify non-detects as unusable (R)
- 5. If an IS retention time varies more than 30 seconds, review the chromatographic profile for shifts and irregularities. Use professional judgement to qualify the data estimated (J/UJ) or unusable (R)

|   | No issues |  |
|---|-----------|--|
|   |           |  |
| n |           |  |
|   |           |  |
|   |           |  |
|   |           |  |

Page 6 of 11 VI. Blanks All blanks were reported per matrix per congentration level for each 12 hour period on each GC/ MS system used to analyze VOCs and SVOCs Yes No Review associated laboratory and project blank samples. List documented contamination below: **Laboratory Method Blanks:** Conc. (ppb) Fraction Compound Lab ID# Date: Associated Project Blanks (e.g., equipment rinsates, trip blanks, etc.) Compound Conc. (ppb) Lab ID# Fraction Date Remarks:

# VI. Blanks (continued)

Calculate action levels based on 10X the highest blank concentration of "common laboratory solvents", VOCs (methylene chloride, acetone, toluene, 2-butanone, cyclohexane) or SVOCs (phthalates), and 5X the highest blank concentration for all other VOC, SVOC, Pesticides, and PCB compounds. Sample weights, volumes, and dilution factors must be taken into account when applying the 5X and 10X criteria. This allows the total amount of contaminant present to be considered.

| Deviations: |                 |                    |                  |
|-------------|-----------------|--------------------|------------------|
|             | Maximum Conc.   | Action Level (ppb) | Samples Affected |
| Compound    | Detected, (ppb) |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
| ·           |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |
|             |                 |                    |                  |

# **Actions:**

- 1. If compound results exceed the action levels, the data are not qualified
- 2. If compound results are below the required reporting level, report results as non-detect (U) at the reporting level
- 3. If the compound is detected above the reporting level, but below the action level, qualify as not-detected (U)
- 4. If gross contamination exists in blanks (i.e.,, saturated peaks by GC/ MS), all affected compounds in the associated samles should be qualified as unusable (R) due to interference.

Λ

5. If blanks were not analyzed per matrix per concentration level for each 12 hour period on each GC/MS system used to analyze VOCs and SVOCs use professional judgement to qualify data. Data may be rejected (R).

| Remarks: | <br>No | dodativus | <br>            | _ |
|----------|--------|-----------|-----------------|---|
|          | <br>   |           | <br><del></del> |   |
|          | <br>   |           | <br>·           |   |
|          | <br>   |           |                 |   |

1 1 1

# VII. Initial & Contining Calibration (VOC, SVOC)

GC/MS instrument performance checks (BFB / DFTPP) Acceptable Y or N All compounds must have and RRF > 0.01, %RSD < 30, and %D < 25

VOC - Date of initial calibration:

VOC - Date(s) of continuing calibration:

Was the 12 hour critieria met? Y or N

SVOC- Date of initial calibration:

SVOC - Date(s) of continuing calibration:

Was the 12 hour critieria met? Y or N



# **Deviations:**

| Compound                     | Date     | RRF   | %RSD | %D   | Samples Affected    |
|------------------------------|----------|-------|------|------|---------------------|
| 1.4-Dioxars                  | 12/15/14 | 0,003 |      |      | 1,2,3,4,5,6,7,8,9-R |
| . The Trichlorostuoronething | 1/19/15  |       |      | 35.5 | None                |
| 2.2 - Dichloropopane         | 1/19/15  |       |      | 45.7 | None                |
|                              |          |       |      |      |                     |
|                              |          |       |      |      |                     |
|                              |          |       |      |      |                     |
|                              |          |       |      |      |                     |

<sup>\* %</sup> Difference = ((RF<sub>CCV</sub> - RF<sub>ICAL AVG</sub>)/RF<sub>ICAL AVG</sub>) x 100. In instances where the bias of the CCV impacts validation qualifiers, review the RF values or amount reported to confirm that the % Difference or % Drift are reported with the correct negative or positive value.

- 1. If any compound has an intial or continuing RRF of < 0.01, qualify positive results as estimated (J)
- 2. If any compound has an intial or continuing RRF of < 0.01, qualify non-detects as unusable (R)
- 3. If any compound has a %RSD >30 or a %D >25, qualify positive results as estimated (J)
- 4. If any compound has a %RSD >40 or a %D >40, qualify non-detects as estimated (UJ)
- 5. If BFB or DFTPP mass assignment / ION abundance criteria are all associated data as unusable (R).
- 6. If samples were analyzed outside the 12 hour BFB or DFTPP performance check time period, qualify the affected sample data as estimated (J/UJ).
- 7. If separate calibration for water and soil were not performed, use professional judgement to evaluate the data. Data may be rejected (R).
- 8. If calibrations were not completed within the 12 hour criterion, qualifty all associated data as estimated (J/UJ). If the 12 hour criterion was grossly exceeded, reject all associated data (R).

| Remarks: | 566 | above. |
|----------|-----|--------|
|          |     |        |
|          |     |        |

| (6)                                                                                                                                |                                                                                                  | Page 9 of 11                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIII. Initial & Continuing C                                                                                                       | alibration (Pesticides, P                                                                        | CBs)                                                                                                                                                                               |
| Linearity evaluation, are %F                                                                                                       | RSD <20? (Y/N)                                                                                   |                                                                                                                                                                                    |
| Is the RPD between calibrat                                                                                                        | tion factors <u>≤</u> 25? (Y/N)                                                                  | <del></del>                                                                                                                                                                        |
| Are multicomponent calibrat                                                                                                        | tion data provided for eac                                                                       | h analysis date? (Y/N)                                                                                                                                                             |
| Is the difference between co                                                                                                       | lumns check ≤ 25%D? (\                                                                           | (/N)                                                                                                                                                                               |
| Are 4, 4'- DDT and endrin b                                                                                                        | reakdown (PEM) <u>&lt; 2</u> 0% a                                                                | and combined breakdown ≤ 30% (Y/N)                                                                                                                                                 |
| Deviations:                                                                                                                        |                                                                                                  |                                                                                                                                                                                    |
| Compound                                                                                                                           | %RSD RPD                                                                                         | Samples Affected                                                                                                                                                                   |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    | A V                                                                                              |                                                                                                                                                                                    |
| -                                                                                                                                  | A                                                                                                |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
| * % Difference = ((RF <sub>CCV</sub> - RF <sub>IC</sub>                                                                            | ALAVG)/FICAL AVG) X 100. ID                                                                      | instances where the bias of the CCV impacts                                                                                                                                        |
|                                                                                                                                    |                                                                                                  | ed to confirm that the % Difference or %                                                                                                                                           |
| Drift are reported with the corre                                                                                                  | / 1                                                                                              | \                                                                                                                                                                                  |
| Actions:                                                                                                                           |                                                                                                  |                                                                                                                                                                                    |
| <ol> <li>If %RSD criteria are not met,</li> <li>If RPD criteria are not met, q</li> <li>If %D criteria is not met, qual</li> </ol> | yalify positive results as esti<br>ify positive results as estima<br>met, positive 4, 4'-DDT and | stimated (J) and non-detects as estimated (UJ) mated (J) and non-detects as estimated (UJ) sted (J) and non-detects as estimated (UJ) endrin should be qualified as estimated (J). |
| Remarks:                                                                                                                           |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                    |                                                                                                  |                                                                                                                                                                                    |

# IX. Matrix Spike/Matrix Spike Duplicate Information

| General MS/MSD Criteria:         |
|----------------------------------|
| percent recovery (%R)            |
| relative percent difference (RPI |

| eneral MS/MSD Criteria:           | VOC    | SVOC   | Pest   | PCB    |
|-----------------------------------|--------|--------|--------|--------|
| percent recovery (%R)             | 70-130 | 45-135 | 40-140 | 40-140 |
| relative percent difference (RPD) | <30    | <50    | <50    | <50    |

| Project Sample(s) Spiked: |  |  |
|---------------------------|--|--|
|---------------------------|--|--|

# Deviations:

| Deviations. |          |         |     | _      |                  |
|-------------|----------|---------|-----|--------|------------------|
|             | %R       | %R      | RPD | RPD    |                  |
| Compound    |          | Limits_ |     | Limits | Samples Affected |
|             |          |         |     |        |                  |
|             | +        |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             | -        |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             | <u> </u> |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     | 1      |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        |                  |
|             |          |         |     |        | <u> </u>         |

# **Actions:**

- 1. If the spike recovery is above the upper control limit (UCL), qualify all positive values in the unspiked sample as estimated (J) and non-detects as estimated (UJ).
- 2. If the spike recovery is below the lower control limit (LCL), qualifty positive values as estimated (J). And non-detects as estimated (UJ).
- 3. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 4. If the RPD does not meet criteria, qualify positive values in the unspiked sample as estimated (J)
- 5. Use professional judgement to qualify additional samples in the analytical group based on MS/MSD results
- 6. Use professional judgement for qualification of data for unspiked compounds

| Remarks: | Nono Collected. |
|----------|-----------------|
|          |                 |
|          |                 |
|          |                 |

1 1

# X. Laboratory Control Sample Information

| Gene | ral | LC  | S  | Crit | eria | a:  |    |
|------|-----|-----|----|------|------|-----|----|
| pe   | rce | ent | re | cov  | ery  | (%F | ₹) |

| VOC    | SVOC   | Pest   | PCB    |
|--------|--------|--------|--------|
| 80-120 | 60-120 | 50-130 | 50-130 |

Laboratory LCS Identifications:

LCS 180-130947/9 , LCS 180-131060/8, LCSD 180-130947/10

| Deviations:         |         |            |                                     |
|---------------------|---------|------------|-------------------------------------|
| Compound            | Date    | %R         | Samples Affected/Qualifiers Applied |
| 2-Hexanone          | 1/19/15 | 78         | 67V - Jas UT 1                      |
| 1,1 - Dichloroethas |         | 75         | ) to we are                         |
| Chloronothus        |         | 75         | ( ) al wind                         |
| Vingl Chloride      |         | 74         | the (ab                             |
| chloroethans        |         | <b>₹</b> 3 | Jue (ab                             |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |
|                     |         |            |                                     |

# **Actions:**

Action should be based on both the number of compounds outside the criterion and the magnitude of the exceedance.

- 1. If the LCS recovery is below limits but > one- half the lower limit, qualify valves as estimated (J/UJ).
- 2. If the LCS recovery is < one-half the lower limit, qualify all data for that analyte as unusable (R).
- 3. If the LCS recovery is greater than the upper limit, qualify positive valves for that analyte as estimated (J).
- 4. If more than half the compounds in this LCS are not within recovery criteria, then qualify associated detected compounds as estimated (J).
- 5. Use professional judgement for qualification of data for compounds with no LCS information

| emarks: |      | ebov6 | * |  |
|---------|------|-------|---|--|
|         |      |       |   |  |
|         | <br> |       |   |  |
|         | <br> |       |   |  |
|         |      |       |   |  |
|         | <br> |       |   |  |

# Hold Time Summary

| Sample Number | Method      | Date<br>Collected | Analysis Date | Date Extracted | Days to<br>Analysis |
|---------------|-------------|-------------------|---------------|----------------|---------------------|
| 180-40481-1   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                |                     |
| 180-40481-2   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                |                     |
| 180-40481-3   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | 1                   |
| 180-40481-4   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | 1                   |
| 180-40481-5   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | 1                   |
| 180-40481-6   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | 1                   |
| 180-40481-7   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | =                   |
| 180-40481-8   | MCAWW 300.0 | 1/14/2015         | 1/15/2015     |                | :                   |
| 180-40481-1   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | ġ                   |
| 180-40481-2   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | ç                   |
| 180-40481-3   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | 9                   |
| 180-40481-4   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | 9                   |
| 180-40481-5   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | ġ                   |
| 180-40481-6   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | S                   |
| 180-40481-7   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | g                   |
| 180-40481-8   | SM SM 2320B | 1/14/2015         | 1/23/2015     |                | ç                   |
| 180-40481-1   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-2   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-3   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-4   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-5   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-6   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-7   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-8   | SW846 6020A | 1/14/2015         | 1/21/2015     | 1/16/2015      | 7                   |
| 180-40481-1   | SW846 8260C | 1/14/2015         | 1/16/2015     |                |                     |
| 180-40481-2   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | 7                   |
| 180-40481-3   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | 2                   |
| 180-40481-4   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | į                   |
| 180-40481-5   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | 2                   |
| 180-40481-6   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | 2                   |
| 180-40481-6   | SW846 8260C | 1/14/2015         | 1/19/2015     |                | 5                   |
| 180-40481-7   | SW846 8260C | 1/14/2015         | 1/19/2015     |                | 5                   |
| 180-40481-8   | SW846 8260C | 1/14/2015         | 1/19/2015     |                | 5                   |
| 180-40481-9   | SW846 8260C | 1/14/2015         | 1/16/2015     |                | 2                   |

Thursday, February 26, 2015 Page 1 of 1

# **Trip Blank Detections**

Sample ID

Sample

Analyte

Result

Method

Units

Qual

# SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Inorganic Data Review Checklist - Standard Validation (Chloride, Fluoride, Nitrate/Nitrite, Sulfate, Sulfide, Phosphate, etc.)

| Project:             | Harley - Davidson                                                                                                                                                                  |                                                                                                         | _                                                   | Page 1 of 8                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| SDG No:              | 180-40481-1                                                                                                                                                                        | Analysis:                                                                                               |                                                     | 6, Sulfate, Alkalinia       |
| Laboratory:          | Test Amorse Pittsburgh                                                                                                                                                             | Method:<br>Matrix:                                                                                      | 9320B, 3                                            | 300,0                       |
| data have been su    | ackage has been reviewed and the aummarized. The general criteria use nination of the following:                                                                                   | analytical quality co                                                                                   | ontrol/quality assuran<br>nalytical integrityof the | ce performance<br>data were |
|                      | Analytical Holding Times M Sample Preservation D Method Calibration                                                                                                                | lethod and Project<br>latrix Spike Recove<br>uplicate Difference<br>CS Recoveries<br>e-analysis and Sec | eries<br>es                                         | S <sub>a</sub>              |
| Overall Remarks      | s: No may                                                                                                                                                                          | w ,354                                                                                                  | ec S                                                |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
|                      |                                                                                                                                                                                    |                                                                                                         |                                                     |                             |
| Definition of Qualif | iers:  "U", not detected at the associated "UJ", not detected and associated "J", associated value estimated "R", associated value unusable or "=", compound properly identified a | value estimated<br>analyte identity unf                                                                 | ounded                                              |                             |
| Reviewed by:         | Alan G. Millar N. C                                                                                                                                                                | W/C                                                                                                     | Date:                                               | 3/2/15                      |
| QA Reviewed by       | : CAKmee_                                                                                                                                                                          |                                                                                                         | _ Date:                                             | 6-23-15.                    |

VCw 31.

|                                                                                            | Page 2 of 8                              |
|--------------------------------------------------------------------------------------------|------------------------------------------|
| I. Case Narrative                                                                          |                                          |
| Verify direct statements made within the Laboratory Case N                                 | arrative (note discrepancies).           |
| lacktriangle                                                                               | 135465                                   |
| Remarks.                                                                                   | 1 75 4067                                |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
| II. Re-analysis and Secondary Dilutions                                                    |                                          |
| Verify that re-analysis and secondary dilutions were performappropriate results to report. | ned and reported as necessary. Determine |
| Remarks: No. 15                                                                            | 541 S                                    |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |
|                                                                                            |                                          |

# **III. Holding Times**

Sample should be preserved and analyzed according to the appropriate analytical method in general the following preservations and holding times for waters can be applied:

Sulfate, 4 degress C, 28 days

Sulfide, 4 degrees C, pH ≥9 with zinc acetate/sodium hydroxide, 7 days

Bromide/Chloride/Fluoride, no preservative required, 28 days

Nitrate/Nitrite or Ammonia, 4 degrees C, pH ≤ 2 with sulfuric acid, 28 days

Nitrate or Nitrite, 4 degrees C, 48 hours

Alkalinity, 4 degrees C, 14 days

TDS/TSS, 4degrees C, 7 days

Phosphate (total), 4 degrees C, pH < 2 with sulfuric acid, 28 days

Hexavalent Chromium, Cool 4 degress C, water- 24 hours, soil - 30 days

# **Deviations:**

| Sample #                              | Analyte | Date      | Date      | Date     | Notes: |
|---------------------------------------|---------|-----------|-----------|----------|--------|
|                                       |         | Collected | Extracted | Analyzed |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |
| · · · · · · · · · · · · · · · · · · · |         |           |           |          |        |
|                                       |         |           |           |          |        |
|                                       |         |           |           |          |        |

- 1. If holding times are exceeded, all results are qualified as estimated (J/UJ)
- 2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)
- 3. If samples were not properly preserved, use professional judgement to qualify the data

| Remarks: | No issuas. |  |
|----------|------------|--|
|          |            |  |
|          |            |  |
|          |            |  |
| :        |            |  |

# IV. Initial & Continuing Calibration

A blank and at least three standards should be analyzed, with one of the standards being within 2X the MDL Correlation coefficients must be  $\geq 0.995$ 

Initial calibration check recoveries must be within 90-110%

Continuing calibration check recoveries must be within 85-115%

# **Deviations:**

| Deviations: |                            |             |    |                  |
|-------------|----------------------------|-------------|----|------------------|
| Compound    | Correlation<br>Coefficient | ICV/<br>CCV | %R | Samples Affected |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
| ·           |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
| 11          |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            |             |    |                  |
|             |                            | · · ·       |    |                  |

- 1. If any compounds initial calibration linearity is <0.995, qualifyy the data as estimated (J/UJ)
- 2. If any compounds initial calibration linearity is <0.95, qualify the data as unusable (R)
- 3. If ICV or CCV criteria are not met, qualify positive results as estimated (J) and non-detects as estimated (UJ)
- 4. If ICV or CCV recoveries fall below 50%, qualify results as unusable (R)

| Remarks: |      |  |              |  |  |  |
|----------|------|--|--------------|--|--|--|
|          |      |  |              |  |  |  |
|          |      |  |              |  |  |  |
|          |      |  | <del>.</del> |  |  |  |
|          |      |  |              |  |  |  |
|          |      |  |              |  |  |  |
| <u> </u> |      |  |              |  |  |  |
|          | -    |  |              |  |  |  |
|          | <br> |  |              |  |  |  |

# V. Blanks (Method Blanks and Project Blanks)

An analytical method blank must be analyzed with each batch of samples

Calculate action levels based on 5X the highest blank concentration of any given analyte

Sample weights, volumes, and dilution factors must be taken into account when applying the 5X criteria

| Maximum Conc.               | Action Level (ppb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Samples Affected                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                     |
|                             | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |
| 0,00912                     | 0,00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| the action levels, the      | data are not qualified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| w the required reporting le | evel, but below the acti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as non-detect (U) at the reporting level |
| .4 (1)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                        |
|                             | Caroli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oles impactas                            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| <u></u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                             | the action levels, the with the required reporting leads to the repo | Detected, (ppb)  3.96 19.8 3.96 19.8     |

Page 6 of 8

# VI. Laboratory Control Sample Information

Each analyte's LCS % recovery must be within the control limits established by the laboratory In general LCS % recoveries should all be within 85-115%

| <b>Deviations:</b> Analyte | Date                                    | %R              | Samples Affected/Qualifiers Applied       |
|----------------------------|-----------------------------------------|-----------------|-------------------------------------------|
| ilyto                      | Butto                                   | 7011            |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         | <u> </u>        |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
| i                          |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            | Ì                                       |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
| tions:                     |                                         |                 |                                           |
|                            | is outside limits h                     | ut >10% au      | alify all positive values as esimated (J) |
| If the LCS recovery        | is outside limits b                     | ut >10%, qu     | alify non-detect values as estimated (UJ) |
| If the LCS recovery        | is <10%, qualify a                      | all data for th | at analyte as unusable (R)                |
| Use professional iud       | dement for quality                      | fication of da  | ta for compounds with no LCS information  |
| ,                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |                                           |
| Remarks:                   |                                         | No              | 035uas                                    |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 |                                           |
| <del></del>                |                                         |                 |                                           |
|                            |                                         |                 |                                           |
|                            |                                         |                 | _                                         |

# VII. Matrix Spike Information

Each analyte's Matrix Spike % recovery should be within the laboratory established control limits In general matrix spike % recoveries should all be within 75-125%

| 11 | ev  | 10  | Ŷ۱ | $\sim$ | Ph. | • |   |
|----|-----|-----|----|--------|-----|---|---|
| _  | C V | 143 |    | 4.5    |     | - | _ |

|         | %R           | %R     |                  |
|---------|--------------|--------|------------------|
| Analyte |              | Limits | Samples Affected |
|         |              |        |                  |
|         |              |        |                  |
|         | +            |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         | +            |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         | <del> </del> |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |
|         |              |        |                  |

| - | - 4 |   |    |     |    |  |
|---|-----|---|----|-----|----|--|
| - | ct  | ш | -  | 100 | -  |  |
| - |     | ш | αз |     | 5% |  |
|   |     |   |    |     |    |  |

- 1. If the spike recovery is outside limits, qualify all values in the unspiked sample as estimated (J/UJ)
- 2. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 3. Use professional judgement to qualify additional samples in the analytical group based on MS results
- 4. Use professional judgement for qualification of data for unspiked analytes

| 0 | 100 67   | 5465 |            |         |
|---|----------|------|------------|---------|
|   |          |      |            |         |
|   |          |      |            |         |
|   |          |      |            |         |
|   |          |      |            |         |
|   | <u>.</u> |      |            |         |
|   |          |      | 100 075465 | No Bsus |

Page 8 of 8

# VIII. Laboratory Duplicate Information

Each analyte's RPD should be within the laboratory established control limits In general RPDs should all be within 20%

| eviations:                            | <u>,</u>             | <u> </u>                           |                                                                                                                                  |
|---------------------------------------|----------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Analyte                               | RPD                  | RPD<br>Limits                      | Samples Affected                                                                                                                 |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
| <del></del>                           |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
| <ol><li>Use professional ju</li></ol> | dgement to qualify a | additional samp<br>ation of data w | spiked sample as estimated (J/UJ) bles in the analytical group based on RPD results when laboratory duplicates were not analyzed |
| Remarks:                              |                      | No                                 | 135465                                                                                                                           |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |
|                                       | <del></del>          |                                    |                                                                                                                                  |
|                                       |                      |                                    |                                                                                                                                  |

# SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Metals Data Review Checklist - Standard Validation

| Project:                       | Harley-Davidson                                                                                                                                                              | Page 1 of 13                                                                                                                                                                                                                                                           |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SDG No:                        | 180-40481-1                                                                                                                                                                  | Analysis: Na,Ca,Mg                                                                                                                                                                                                                                                     |  |  |  |
| Laboratory:                    | TestAmerica Pittsburgh                                                                                                                                                       | Method: 6020A Matrix: Water                                                                                                                                                                                                                                            |  |  |  |
| data have been su              | ackage has been reviewed and the<br>Immarized. The general criteria unination of the following:                                                                              | e analytical quality control/quality assurance performance sed to assess the analytical integrity of the data were                                                                                                                                                     |  |  |  |
| Project specific QA            | Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks LCS Recoveries VQC or contract requirements ma                      | MS/MSD Recoveries and Differences Duplicate Relative Percent Differences ICP Serial Dilution Furnace Atomic Absorption QC Re-analysis and Secondary Dilution Internal Standard Performance (if applicable) y take priority over validation criteria in this procedure. |  |  |  |
| Overall Remarks: No myon 185ms |                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
|                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
|                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
|                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
|                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
| Definition of Qualifi          | ers: "U", not detected at the associate "UJ", not detected and associate "J", associated value estimated "R", associated value unusable of "=", compound properly identified | d value estimated or analyte identity unfounded                                                                                                                                                                                                                        |  |  |  |
| Reviewed by:  QA Reviewed by:  | Alan G. M. Van Jr                                                                                                                                                            | Date: $\frac{3/2}{5}$ Date: $\frac{3}{2}$                                                                                                                                                                                                                              |  |  |  |



|                     | Page 2 of 13                                                                       |
|---------------------|------------------------------------------------------------------------------------|
| l Coop Nowesti      |                                                                                    |
| I. Case Narrati     | ve                                                                                 |
| Verify direct state | ements made within the Laboratory Case Narrative (note discrepancies).             |
| Remarks:            | 100 444 5444                                                                       |
| Remarks.            | No magni issues                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
| II. Da analysis     | and Secondary Dilutions                                                            |
| II. Ke-anaiysis     | s and Secondary Dilutions                                                          |
| Verify that re-an   | alysis and secondary dilutions were performed and reported as necessary. Determine |
| appropriate resu    | Its to report.                                                                     |
| Remarks:            |                                                                                    |
|                     |                                                                                    |
|                     | V                                                                                  |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |
|                     |                                                                                    |

# **III. Holding Times**

Metals - Waters - preserved to pH<2, 180 days from sample collection

Metals - Soils - 180 days from sample collection

Mercury - Waters - preserved to pH<2, 28 days from sample collection

Mercury - Soils - 28 days from sample collection

# **Deviations:**

|          |                   | Metals           |             |             |                   | Mercury          |             |             |
|----------|-------------------|------------------|-------------|-------------|-------------------|------------------|-------------|-------------|
| Sample # | Date<br>Collected | Date<br>Analyzed | Days<br>>HT | pH<br>Check | Date<br>Collected | Date<br>Analyzed | Days<br>>HT | pH<br>Check |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   | _                |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   | -                |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |
|          |                   |                  |             |             |                   |                  |             |             |

- 1. If preserved samples exceed holding time, qualifty all associated results as estimated (J/UJ).
- 2. If unpreserved samples exceed holding time, qualify all associated results as unusable (R).
- 3. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)
- 4. If water samples are not acidified, use professional judgement. Minimally, qualify data as estimated (J) and non-detects unusable (R).
- 5. If soil samples exceed holding time, use professional judgement to qualify data.

| Remarks:    | N        | or issues |  |
|-------------|----------|-----------|--|
|             |          |           |  |
| <del></del> | <u> </u> |           |  |
|             |          |           |  |

# IV. Initial & Contining Calibration (ICP, GFAA, CVAA, etc.)

Initial calibration linearity criteria is  $r \ge 0.995$  ICV and CCV criteria are  $\pm$  10% recovery, low level check standard allowed  $\pm$  30% ICP inter-element check standard criteria  $\pm$  20%

|   |     |    | 4.0 |   |    |   |   |
|---|-----|----|-----|---|----|---|---|
| m | ev  | 19 | 40  |   | m  | 0 | П |
| ш | EV. | 10 |     | u | 11 | 3 | ٠ |

| Deviations. |      | 1 0 0    | 10) // |    | Camples Affected |
|-------------|------|----------|--------|----|------------------|
|             |      | Intial   | ICV/   |    | Samples Affected |
| Element     | Date | Calib.   | CCV    | %R |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          | 1      |    | <u> </u>         |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      | <b></b>  |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      | <u> </u> |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    |                  |
|             |      |          |        |    | <u> </u>         |

- 1. If any elements initial claibration linearity is <0.995, qualify the data as estimated (J/UJ)
- 2. If any elements initial claibration linearity is <0.95, qualify the data as unusable (R)
- 3a. If any elements ICV or CCV recovery is <90%, qualify the data as estimated (J/UJ)
- 3b. If any elements ICV or CCV recovery is > 110%, qualify results ≥ MDL as estimated (J), do not qualify non-detects
- 4a. If any elements ICV or CCV recovery is <75%, qualify the data as unusable (R)
- 4b. If any elements ICV or CCV recovery is > 125%, qualify positive results as estimated (J) or non-detects unusable (R)
- 4c. If any elements ICV or CCV recovery is > 160%, qualify positive results ≥ MDL us unusable (R). Do not qualify non-detects.
- 5a. If any elements CRI recovery is 50-69% (30-49% for Sb, Pb, Tl), qualify results ≥ MDL (but < 2 x CRQL) as estimated (J/UJ) and results > 2 x CRQL are not qualified.
- 5b.If any elements CRI recovery is < 50% (< 30% for Sb, Pb, Tl), qualify results ≥ MDL (but < 2 x CRQL) as unusable (R) and results > 2 x CRQL as estimate (J).
- 5c. If any elements CRI recovery is > 130% but < 180 % (> 150% but ≤ 200% for Sb, Pb, Tl) quality results ≥ MDL (but < 2 x CRQL) as esimated (J) and non-detects and results > 2 x CRQL are not qualified.
- 5d. If CRI or (R) > 180% (> 200% for Sb, Pb, Ti), qualify results that are ≥ MDL as unusable (R).

| Remarks: | <br>No issuus |  |
|----------|---------------|--|
|          |               |  |

| IV. Initial & Contining Calibration (ICP, GFAA, CVAA, etc.) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|--|--|--|
| Analytical Sequence and MS Tune (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                      |                                                                |             |  |  |  |
| <ol> <li>Were the appropriate number of ICP standards used?</li> <li>Were the appropriate number of AA standards used?</li> <li>Was calibration performed and documented at the beginning of each run?</li> <li>Were calibration check standards run at 10% frequency or every two hours?</li> <li>Were low level standard checks analyzed at approximately 2X the PQL?</li> <li>Was ICP-MS mass calibration within 0.1 AMU?</li> <li>Was ICP-MS % RSD of the absolute signals for all analytes &lt; 5%?</li> </ol> Deviations: |                                                                                                                                                                                                      |                                                                |             |  |  |  |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deviation                                                                                                                                                                                            | Samples Affected                                               |             |  |  |  |
| <ul><li>2. If instrument calibration doc</li><li>3. If mass calibration for ICP-N</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     | uestionable, use professional judgement, qualify umentation can not be obtained or is inadequate IS was not within 0.1 AMU, qualify analyte resul 5% for any analyte in the tuning solution, qualify | e, qualify the data as unusable (R)<br>ts as estimated (J/UJ). | ).          |  |  |  |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                | <del></del> |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                |             |  |  |  |

# V. Blanks (ICB, CCB, Method Blank, Equipment Rinsate Blank)

### A. Blank Results

If the blank level is > CRQL for any analyte check that the analyte's concentration in a sample is > 10 x the blank value. The highest blank concentration of observed elements is the action level.

Sample weights, volumes, and dilution factors must be taken into account when applying the action level.

Blank results given in ug/L must be converted to mg/kg to compare them with soil sample results.

use the following equation:

 $ua/L \times V/W \times 1L/1000mL \times 1000g/1kg \times 1mg/1000ug = mg/kg$ 

where:

V = volume of samples digest solution (usually 200 mL)

W = weight of sample digested (usually 1 g)

#### **Deviations:**

| Deviations.      |           |            |        |                  |
|------------------|-----------|------------|--------|------------------|
|                  |           | Max. Conc. | Action | Samples Affected |
| Blank ID         | Element   | Detected   | Level  |                  |
| MB180-13092 VI-A | Calcina   | 10.1       | 101    | None             |
| 1                | Macnesium | 2,86       | 28.6   |                  |
|                  | Potassium | 13.6       | 136    |                  |
| V                | Sodium    | 5,65       | 56.5   | V                |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  | -         |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |
|                  |           |            |        |                  |

If additional space is required, use next page

- 1. For blank results ≥ MDL but ≤ CRQL, qualify sample results ≥ MDL but < CRQL as CRQL U. Use professional judgement to qualify sample results exceeding the CRQL.
- 2a. If blank results are > CRQL: for sample values ≥ MDL but ≤ CRQL, qualify results as CRQL U; for sample values > CRQL but < 10 x the blank, qualify results as unusable (R) or estimated (J). No action is taken for sample results > 10 x the blank values.
- 2b. If ICB/ CCB results are > CRQL: for sample values ≥ MDL but ≤ CRQL, qualify results as CRQL U; for sample values > CRQL but < blank results, qualify results as not detected (U) at the level of the blank or unusable (R). Use proffessional judgement for sample results > blank results.

| Remarks: | No samples impacted |
|----------|---------------------|
|          |                     |

# V. Blanks (continued)

The highest blank concentration of observed elements is the action level.

Sample weights, volumes, and dilution factors must be taken into account.

Blank results given in ug/L must be converted to mg/kg to compare them with soil sample results. use the following equation:

 $ug/L \times V/W \times 1L/1000mL \times 1000g/1kg \times 1mg/1000ug = mg/kg$ 

where:

V = volume of samples digest solution (usually 200 mL)

W = weight of sample digested (usually 1 g)

### **Deviations:**

|                                       |         | Max. Conc.                                       | Action | Samples Affected |
|---------------------------------------|---------|--------------------------------------------------|--------|------------------|
| Blank ID                              | Element | Detected                                         | Level  |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  | · .    |                  |
|                                       |         |                                                  |        |                  |
| <u>.</u>                              |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
| · · · · · · · · · · · · · · · · · · · |         | +                                                |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         | +                                                |        |                  |
| _                                     |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         | <del>                                     </del> |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         | <del>                                     </del> |        |                  |
|                                       |         | +                                                |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        | 525              |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |
|                                       |         |                                                  |        |                  |

|                        |                     |                                         |              | Page 8                                                       | of 13       |
|------------------------|---------------------|-----------------------------------------|--------------|--------------------------------------------------------------|-------------|
| V. Blanks (c           | ontinued)           |                                         |              |                                                              |             |
| B. Frequency           | Requirements        |                                         |              |                                                              | (Y/N)       |
| 2. Was a ı             | method blank pr     | ation) blank analy<br>rocessed for ever | ry analytica | ch matrix?<br>I batch (20 samples)?<br>y or every two hours? | <u> </u>    |
|                        | calibration blank   | analyzed at 107                         | o irequerie, | y or overy two neare.                                        |             |
| Deviations:<br>Element |                     | Deviation                               |              | Samples                                                      | Affected    |
| <u> </u>               |                     | Deviation                               |              | Campioo                                                      | Allootod    |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         | _            |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
| Remarks:               |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
| C Baseline 9           | Shift Evaluation    |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
| List the highes        | st negative blank o | concentration for e                     | ach analyte  | observed in laboratory or proje                              | ect blanks. |
| Deviations:            |                     |                                         |              |                                                              |             |
|                        |                     | Max. Neg.                               | Action       | Samples                                                      | Affected    |
| Blank ID               | Element             | Conc.                                   | Level        |                                                              |             |
|                        |                     |                                         | <u></u>      |                                                              |             |
|                        |                     |                                         | <u> </u>     |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         | <u> </u>     |                                                              |             |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              | -           |
|                        |                     |                                         |              |                                                              |             |
|                        |                     |                                         | <u> </u>     |                                                              |             |
|                        |                     | aximum negative                         |              | s > the CRQL, qualify<br>ed (UJ).                            |             |
| Remarks:               |                     | •                                       |              |                                                              |             |
| iveilla!ks.            |                     |                                         |              |                                                              |             |
|                        |                     |                                         |              |                                                              | -           |

# VI. Laboratory Control Sample Evaluation

All LCS recovery criteria are set at 80-120%

An LCS must be analyzed for each matrix and for each digestion batch or set of twenty samples

|     |    | 4.0 |   |   |   |  |
|-----|----|-----|---|---|---|--|
| Dev | 12 | 4   | 0 | m | • |  |
|     | ш  | ш   | u |   | 3 |  |

| Element | Date | %R       | Matrix | Samples Affected |
|---------|------|----------|--------|------------------|
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        | ű.               |
|         |      |          |        |                  |
|         |      | <u> </u> |        |                  |
|         |      |          | ł l    |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
| ·       |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |
|         |      |          |        |                  |

| 1. | If any element | 's LCS recovery | is >120%, | qualify | positive resul | ts as ( | (J) | ç |
|----|----------------|-----------------|-----------|---------|----------------|---------|-----|---|
|----|----------------|-----------------|-----------|---------|----------------|---------|-----|---|

- 2. If any element's LCS recovery is 50-79%, qualify positive results as (J) and non-detect results as (UJ).
- 3a. If any element's LCS recovery is <50%, qualify positive results as (J) and non-detect results as (R).
- 3b. If the LCS recovery is > 150%, qualify all results as unusable (R).
- 4. For soil LCS recovery > upper limit, qualify sample results > MDL as estimated (J).
- 5. For soil LCS recovery < lower limit, qualify results ≥ MDL as estimated (J) and non-detects estimated (UJ).
- 6. Use professional judgement to qualify data if the LCS frequency criteria are not met.

|   |       | 104-3                                 | <del></del>  |
|---|-------|---------------------------------------|--------------|
|   |       | · .                                   |              |
|   |       |                                       |              |
|   |       | · · · · · · · · · · · · · · · · · · · | <u> </u>     |
|   |       |                                       |              |
|   |       |                                       |              |
| · | · *** |                                       | <del> </del> |

| I ago lo oi lo | Page | 10 | of | 13 |
|----------------|------|----|----|----|
|----------------|------|----|----|----|

# VII. Matrix Spike Evaluation

All MS recovery criteria are set at 75-125%

An MS must be analyzed for each matrix and for each digestion batch or set of twenty samples

Verify that a field blank or PE sample was not used for spiked sample analysis.

Verify that a post-digestion spike was analyzed for those analytes where the pre-digestion spike recovery is outside control limits and the sample result is < 4 x the spike added.

| Project Sample(s) Spiked: | pare |  |
|---------------------------|------|--|
|                           |      |  |

# **Deviations:**

|         |                            |               | 0/10                 |                      |
|---------|----------------------------|---------------|----------------------|----------------------|
| Spiked  | Sample                     |               | %R                   |                      |
| Sample  | Result                     | Amount I      |                      |                      |
|         |                            |               |                      | Samples Affected     |
| Tresuit | -                          |               |                      | - Carrieros / Medica |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         |                            |               |                      |                      |
|         | Spiked<br>Sample<br>Result | Sample Result | Sample Result Amount | Sample Result Amount |

- 1. If the sample concentration exceeds the spiking level by a factor of 4X or more, do not qualify the data
- 2. If the spike recovery is >125%, qualify all positive values as (J).
- 3. If the spike recovery is between 30-74%, qualify positive values as (J) and non-detect values as estimated (UJ)
- 4. If the spike recovery is <30%, qualify positive values as (J) and non-detects are qualified unusable (R) if the post-digestion spike recovery is < 75% (or none was performed); non-detects are qualified as estimated (UJ) if the post-digestion spike recovery is ≥ 75%. There is no post-digestion spike performed for mercury.
- 5. Qualify all samples of similar matrix to the spiked sample in the same manner
- 6. Use professional judgement to qualify data if the MS frequency criteria are not met.
- 7. Use professional judgement for qualification of data for unspiked elements

| Remarks: | Nous | Collocal |
|----------|------|----------|
|          |      |          |
|          |      |          |
|          |      |          |
|          |      |          |
|          |      |          |
|          |      |          |

Page 11 of 13

# **VIII. Laboratory Duplicate Evaluation**

Duplicate relative percent difference (RPD) for water is 20% (both results > 5 times CRDL) or < CRDL difference (if either result is < 5 times CRDL) and RPD for soil is 35% (if both results are > 5 times CRDL or < 2 times CRDL if either result is < 5 times CRDL.

When duplicate sample values are both less than the reporting level they are considered acceptable When duplicate sample values are within 5X the reporting level they are acceptable if their absolute difference is within 3X the reporting level

Verify that a field blank or PE samples was not used for duplicate analysis.

# **Deviations:**

| Element       | Sample # | Duplicate # | RPD | Samples Affected |   |
|---------------|----------|-------------|-----|------------------|---|
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
|               |          |             |     |                  | - |
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
|               |          |             |     |                  | , |
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
|               |          |             |     |                  |   |
| <del></del> - |          |             |     |                  |   |
|               |          |             |     |                  |   |

# 

# IX. Inductively Coupled Plasma (ICP) Serial Dilution Analysis

Verify that a field blank or PE sample was not used for serial dulution.

Serial dilution of positive results are performed when values exceed 50X the IDL

Results from serial dilutions should agree within 10% of the original undiluted analysis

| viation<br>ement | Sample #            | Sample                | Serial             | %D                  | Action                            |
|------------------|---------------------|-----------------------|--------------------|---------------------|-----------------------------------|
|                  |                     | Result                | Dilution           | n,                  |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     | <del> </del>          |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |
| tions:           |                     |                       |                    |                     |                                   |
| the seri         | al dilution %D is > | 10 and the analyte re | esults are >50X th | ne IDL, qualify all | positive results as estimated (J) |
| l non-det        | ects as estimated   | (UJ).                 |                    |                     |                                   |
| marks            |                     | 1                     | Isro werk          | , ku                | an Sunks                          |
| iliai kə         |                     |                       | or cocce           | 7.4.                | ac sup-s                          |
|                  |                     |                       |                    |                     | <u></u>                           |
|                  |                     |                       |                    |                     |                                   |
|                  |                     |                       |                    |                     |                                   |

| X. Furnace Atomic Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | esorption QC                                                                                                                                                                                                                                                                                                                                                                                         | Page 13 of 13                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Duplicate Precision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                    | (Y/N)                                                                                                                                                                                          |
| <ol><li>Were one point analy</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tions performed for all samples?<br>ytical spikes performed for all samples?<br>ns agree within <u>+</u> 20%?                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |
| Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deviation                                                                                                                                                                                                                                                                                                                                                                                            | Sample Affected                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| Actions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
| s. Post Digestion Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recoveries                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      | (Y/N)                                                                                                                                                                                          |
| Did post digestion spice. If spike recoveries did it. If MSA was used to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples an alyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                           | riteria?                                                                                                                                                                                       |
| Did post digestion spice. If spike recoveries did it is a life to  | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?                                                                                                                                                          |
| . Did post digestion spi<br>2. If spike recoveries did<br>3. If MSA was used to a<br>Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ike recoveries meet an 85-115% recovery c<br>d not meet recovery criteria were samples ar                                                                                                                                                                                                                                                                                                            | riteria?                                                                                                                                                                                       |
| Did post digestion spile. If spike recoveries did if MSA was used to a Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?                                                                                                                                                          |
| . Did post digestion spi<br>2. If spike recoveries did<br>3. If MSA was used to a<br>Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?                                                                                                                                                          |
| . Did post digestion spi<br>2. If spike recoveries did<br>3. If MSA was used to a<br>Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?                                                                                                                                                          |
| <ol> <li>Did post digestion spi</li> <li>If spike recoveries did</li> <li>If MSA was used to a</li> </ol> Deviations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?                                                                                                                                                          |
| I. Did post digestion spi I. If spike recoveries did I. If MSA was used to a Deviations: Element  Actions: If post digestion spike re If post digestion spike re If post digestion spike re If MSA was used to qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ike recoveries meet an 85-115% recovery control of the recovery criteria were samples and nalyze samples, was its' correlation coefficients.                                                                                                                                                                                                                                                         | riteria? nalyzed by MSA? ent ≥ 0.995?  Sample Affected  J) and non-detect results as (U) (J) and non-detect results as (UJ) e) and non-detect results as (R) <0.995, qualify data as (J or UJ) |
| I. Did post digestion spi I. If spike recoveries did I. If MSA was used to a Deviations: Element  Actions: If post digestion spike re If post digestion spike re If post digestion spike re If MSA was used to qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ike recoveries meet an 85-115% recovery control not meet recovery criteria were samples an analyze samples, was its' correlation coefficient decoveries are >115%, qualify positive results as excoveries are 11-84%, qualify positive results as excoveries are <10%, qualify positive results as (Recoveries are <10%, qualify positive results as (Recoveries and the correlation coefficient was | J) and non-detect results as (U) (J) and non-detect results as (UJ) (J) and non-detect results as (R) <0.995, qualify data as (J or UJ)                                                        |
| Did post digestion spile. If spike recoveries did it. If MSA was used to a Deviations: Element  Actions: If post digestion spike real if post digestion spike real if MSA was used to qual if MSA was used to qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ike recoveries meet an 85-115% recovery control not meet recovery criteria were samples an analyze samples, was its' correlation coefficient decoveries are >115%, qualify positive results as excoveries are 11-84%, qualify positive results as excoveries are <10%, qualify positive results as (Recoveries are <10%, qualify positive results as (Recoveries and the correlation coefficient was | riteria? nalyzed by MSA? ent ≥ 0.995?  Sample Affected  J) and non-detect results as (U) (J) and non-detect results as (UJ) e) and non-detect results as (R) <0.995, qualify data as (J or UJ) |
| Did post digestion spite. If spike recoveries did it is in MSA was used to a constitutions:  It is in the coveries did it is in the covering the covering is in the covering the covering is in the covering in the covering in the covering is in the covering in the covering in the covering is in the covering in the covering in the covering is in the covering | ike recoveries meet an 85-115% recovery control not meet recovery criteria were samples an analyze samples, was its' correlation coefficient decoveries are >115%, qualify positive results as excoveries are 11-84%, qualify positive results as excoveries are <10%, qualify positive results as (Recoveries are <10%, qualify positive results as (Recoveries and the correlation coefficient was | riteria? nalyzed by MSA? ent ≥ 0.995?  Sample Affected  J) and non-detect results as (U) (J) and non-detect results as (UJ) e) and non-detect results as (R) <0.995, qualify data as (J or UJ) |